
API Paradigms
Matthew Rindner

Background

● API stands for Application Programming Interface.

● APIs allow different software applications to communicate with each other.

● There are several types of APIs paradigms, including RESTful APIs, GraphQL,

SOAP APIs and RPCs.

SOAP web services

(Simple* Object Access Protocol)

● platform independent
● Built around rpc
● Based on XML - organized by tags in hierarchy tree (DOM)
● Uses CRUD HTTP methods (GET, POST, DELETE)

● <Envelope> - root element in DOM
● <header> - contains application-specific information (authentication, payment, etc)
● <Body> - contains the actual SOAP message intended for the endpoint of the

message.
○ Contains optional <fault> tags

SOAP header block

SOAP request

SOAP response

SOAP Security

● SOAP APIs will authenticate and authorize the API calls,

● Web Service-Security is a SOAP extension that provides

a number of security features for SOAP APIs.
○ describes how to sign and encrypt SOAP messages

○ Built on XML encryption

● Most importantly, WS-Security enables end-to-end security,

authorization of senders

● Operation chaining

SOAP cons

● SOAP is a standard protocol with strict rules
○ Not flexible

● SOAP APIs forgo performance speed for higher complexity (Security).
○ Operation change is server-side taxing

● Has tight coupling between server and clients
○ To update a message property, must change both client and server

○ Harder to maintain

● XML message structure VERY verbose

XML JSON

● Large XML files can take exponential space

○ DOM + opening/closing tags

● Needs processing power/dedicated tool to

parse xml data into required format

● XML’s broad scope

○ Are limited by imagination (what you wean to

type)

● JSON is lightweight and easy to parse

○ Its string and arrays

● Supported by all browsers

● Seamlessly works with AJAX

● Smaller size means faster transmission

time/space

● Human readable

REST - Representational State transfer

REST is a specification that dictates how distributed systems communicate with each other

● Resource based

● Language agnostic

● Stateless

● Cacheable

REST suggests boundaries instead of a rigid structure

● Uniform interface

● Client server autonomy

● Layered system architecture

● Stateless interactions

● HTTP caching

REST constraints

Uniform interface

● One naming convention - nouns

● One endpoint format

○ uri + http method + resource

● One data format - JSON

Client server autonomy

● Client and server implementation is

abstracted

● Allows for server and client changes

without affecting communication

REST constraints

Layered system Architecture

● Given a system have multiple servers

● Clients will only interact with the API on

the app server

● App server will aggregate the reply for the

client

● Allows for greater server scalability

REST constraints

Stateless Interactions

● Treat every request as a new request
● No past session or request data is stored

○ Different from SOAP

○ Increase server side efficiency

● Makes web app easy to scale

Code On Demand

● Not commonly used

● Client asks server for key generating code

● API will fetch code from the server
○ Runs code on client side

Caching

● clients can retain content and reduce load

on servers

RESTful web service

Constraints enforce simplicity -> easier development

REST is an standard so an api that meets the stand of REST is a RESTful API

Not necessary to enforce every constraint

Resource allocation

● Each resource is assigned to a specific url/uri
○ Ex. https://example.com/api/v3/products

○ Protocol + host address + path to resource

● Each resource must be a noun
○ /products (Good) /getProducts (Bad)

○ HTTP methods will act as the verb

https://example.com/api/v3/products

HTTP methods

CRUD = Create, read, update, delete

● GET - retrieve data from a specified resource okay next we have a
● POST – submit / create data to be process to a specific resource (forms)
● PUT - update a specified resource (adjax)
● DELETE - delete a specified resource

Others

● HEAD - same as get, but does not returns a body, only header
● OPTIONS - see the supported http methods
● PATCH - update partial resources

REST HTTP requests

The requests must also follow a specific format

URI Used to identify the resource via an endpoint. Ex. URL

Method HTTP verb (GET, POST,...).

Protocol Typically HTTP/1.0 or 2.0.

Header Metadata (message format, cache settings, request

authorization, cookies).

Body Payload being sent as a JSON object (Ex. parameters).

(optional)

REST HTTP response

Protocol Typically HTTP/1.0 or 2.0.

HTTP status code 200, 400, 500

Header Metadata (content length, content type, date)

Response body return data in JSON

XML vs JSON

● Large XML files can take exponential space

○ DOM + opening/closing tags

● Needs processing power/dedicated tool to

parse xml data into required format

● XML’s broad scope

○ Are limited by imagination (what you wean to

type)

● JSON is lightweight and easy to parse

○ Its string and arrays

● Supported by all browsers

● Seamlessly works with AJAX

● Smaller size means faster transmission

time/space

● Human readable

SOAP request SOAP response

Versioning

● Versioning allows an implementation to provide backward compatibility
○ if we introduce breaking changes from one version to another, clients have time to move to

new version

● Done by prefixing the uri

Authentication in REST

Uses OAuth 2.0 framework

● No password sharing

● Ability to revoke access to application individually

● Thus users have limited access to resources

Use of a separate authentication server

● Client makes OAuth request => is granted/denied

● Resource server sends client an access token
○ Token determines what resources client can access

● Protected resource is sent back to client

cons

● JSON properties are not strongly typed
○ Further logic to parse and convert properties into data types (uint32, chars, float,..)

● Overfetching - need to make multiple API requests to collect required data
○ This will increase payload size

● API framework developed by Meta/Facebook in 2015

● A query language for APIs

● No under/over fetching of data

● Data in request and responses are strongly typed

● It is language and HTTP agnostic.

● Very flexible

● GraphQL can decouple frontend from backend.

● Is an application layer server-side technology

The BIG difference from REST

● Access any resource through one endpoint, the /graphQL.

● The client will define the structure, schema, of required data and the server

will return the exact JSON data from the schema

Defining Schemas

● Every graph uses a schema to define the

types of data it includes

● Schemas are strongly typed
○ Primitive types

○ Objects

○ Enums

○ Interfaces

○ Unions

○ Input objects

○ ID

● This code must be on both client

and server
○ Normally labeled schema.xx

Operations: Queries and Mutation

● Mutation - GraphQL way of applying modification of resources
○ Equivalent of a POST request

● Queries- GraphQL way for client to receive notifications on data

modifications
○ Equivalent of a GET request

Queries and Mutation

Subscriptions

● Subscriptions are long-lasting operations that can change their result over time.

● Will maintain an active connection to GraphQL server allowing server to push

updates

○ Through WebSockets protocol in the graphql-ws library.

● Used for Small, incremental changes to large objects

● Low-latency, real-time updates. Ex. chat app receiving new messages

Client side

Server Ssde

GraphQL requests and response

GET request format

The response is a nested JSON object just like rest

GraphQL drawbacks

● GraphQL requires heavier tooling support, both on the client and server

sides.
○ No special libraries need for REST APIs

● Required files for all parties
○ Schema.graphql

○ Codegen.yaml

○ operations.graphql

● Need other tools Like Apollo to implement the specification
○ Apollo framework and tools allows us to build, validate, observe the graph

● Few companies have public graphQL services
○ Ex. Yelp, Github, Spacex

○ All have REST APIs as well

GraphQL drawbacks

● This requires a sizable upfront investment.

● In development time and resources

● Adds complexity for CRUD operations

● Caching becomes more difficult

● REST leverages browser, CDNs, proxies, and web services

● Caching becomes highly nuanced and not trivial

GraphQL drawbacks

● Its has a sharp learning curve due to niche operations and schema language
○ Schema definition language (SDL)

○ Does Not follow KISS

So REST vs GraphQL like everything SWE → TRADEOFFS 😃

Is there a better way?

maybe?

Why I chose this topic?

RPC (Remote Procedure Call)

● RPCs enables one machine to perform code one another AS IF its a local call

● Great for connecting multiple backend services together

Same machine
Multiple machines

Why not REST

● For simple servies, HTTP REST is enough
○ HTTP verbs are rich

○ Details are well understood

● For more complex services, RPCs provides more flexibility
○ Domain specific: bank transfers

○ More strongly typed experience

● Open source RPC framework made by Google in 2016

● Language agnostic

● Easy to use

● Really fast performance with ProtoBufs over HTTP/2

● Enables developers to build microservices based apps

● Can use SSL/TLS tokens for Authentication

Protocol Buffers

● Language and platform agnostic mechanism for encoding structured data

over the wire.

● support strongly-typed schema definitions.
○ Defined in a .proto file

● Services defined in a .proto file by

specifying RPC method parameters

and return types.

Performance

● Protocol Buffers is a very efficient binary encoding format.
○ More fast JSON

● gRPC is built on top of HTTP/2
○ Multiplexing

○ Steam prioritization

○ Binary protocols ..

● Allows multiple RPC calls

over a TCP connection

JSON issues

● we can easily parse the JSON to an internal data structure using the built-in

JSON library

● Self-contained and human readable

● BUT cost of serializing/deserializing is expensive

● Has unclear types

JSON is massive

● URL is 19 bytes (19 characters)

● Timestamp as a 32bit is 4 bytes

● Total = 23 bytes

● Nearly half is overhead!!

Protobuf request

● Lets save space and power by declaring this schema beforehand.
○ Defined in our .proto file

● Define codes for each field
○ to mark where one field ends and another one starts.

● use this schema to store the types of the data we store.

Sample Request

Serialization

● But JSON is so simple to read and

parse -> its a string

● Binary is not portable on its own

● Google made open-source

generators

Response

JSON Protobuf

Good for :

● Small volume

● Indeed to inspect

● Messages are varied

● Sending to browsers

Good for:

● Higher volumes

● Similar messages

● Performance matters

● Sending to services

Web clients??

● gRPC relies on lower-level access to HTTP/2 primitives.

● No browsers currently provide that level of control

● Solution: Use a proxy → gRPC-Web

○ Not fully compatible with gRPC

○ Usage is low

Best for Microservices

Which one??

● Each have pros/cons

● Depends on business logic or goals

	Slide 1: API Paradigms
	Slide 2: Background
	Slide 3: SOAP web services
	Slide 4: SOAP header block
	Slide 5: SOAP request
	Slide 6: SOAP response
	Slide 7: SOAP Security
	Slide 8: SOAP cons
	Slide 9: XML JSON
	Slide 10: REST - Representational State transfer
	Slide 11: REST constraints
	Slide 12: REST constraints
	Slide 13: REST constraints
	Slide 14: RESTful web service
	Slide 15: Resource allocation
	Slide 16: HTTP methods
	Slide 17: REST HTTP requests
	Slide 18: REST HTTP response
	Slide 19: XML vs JSON
	Slide 20: SOAP request SOAP response
	Slide 21: Versioning
	Slide 22: Authentication in REST
	Slide 23: cons
	Slide 24
	Slide 25
	Slide 26: The BIG difference from REST
	Slide 27: Defining Schemas
	Slide 28: Operations: Queries and Mutation
	Slide 29: Queries and Mutation
	Slide 30: Subscriptions
	Slide 31: GraphQL requests and response
	Slide 32: GraphQL drawbacks
	Slide 33: GraphQL drawbacks
	Slide 34: GraphQL drawbacks
	Slide 35: Is there a better way?
	Slide 36: Why I chose this topic?
	Slide 37: RPC (Remote Procedure Call)
	Slide 38: Why not REST
	Slide 39
	Slide 40: Protocol Buffers
	Slide 41:
	Slide 42: Performance
	Slide 43: JSON issues
	Slide 44: JSON is massive
	Slide 45: Protobuf request
	Slide 46: Sample Request
	Slide 47: Serialization
	Slide 48: Response
	Slide 49
	Slide 50: JSON Protobuf
	Slide 51
	Slide 52: Web clients??
	Slide 53: Best for Microservices
	Slide 54: Which one??

