APl Paradigms

Matthew Rindner
‘GREC

Background

e API stands for Application Programming Interface.
e APIs allow different software applications to communicate with each other.

e There are several types of APIs paradigms, including RESTful APls, GraphQL,
SOAP APIs and RPCs.

SOAP envelope

SOAP web services SOAP header _

Header block

Header block

(Simple* Object Access Protocol)

platform independent SOAP body

Built around rpc
Based on XML - organized by tags in hierarchy tree (DOM)
Uses CRUD HTTP methods (GET, POST, DELETE)

Body subelemeanit

Body subelement

<Envelope> - root element in DOM
<header> - contains application-specific information (authentication, payment, etc)
e <Body> - contains the actual SOAP message intended for the endpoint of the

message.
o Contains optional <fault> tags

SOAP header block

<?xml version="1.8"2>

<soap:Envelope
xmlns:soap="http://www.w3.0org/2003/05/so0ap-envelope/™
soap:encodingStyle="http: //www.w3.0rg/2003/05/s0ap-encoding” >

<sopap:Header>

<m:Trans xmlns:m="https://www.w3schools.com/transaction/"

soap:actor="https://www.w3schools.com/code/" >234
</m:Trans»

</soap:Header>

</soap:Envelope>

SOAP request

POST fInStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

£?¥xml version="1.8"2>

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/s0ap-envelope/"
soap:encodingStyle="http://www.w3.org/2003/85/soap-encoding™ >

<spap:Body xmlns:m="http://www.example.org/stock”>
<m:GetS5tockPrice>
<m: StockName>IBM< /m:StockName>
</fm:GetStockPrices
</soap:Body>

< fsoap:Envelope>

SOAP reSPonsSe wrre/1.1 200 ox

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.8"32>

<spap:Envelope
xmlns:soap="http: //www.w3.org/2003/05/s0ap-envelope/"
soap:encodingStyle="http://www.w3.0rg/2003/05/s0ap-encoding”»

<spap:Body xmlns:m="http://www.example.org/stock™>
<m:GetStockPriceResponse>
<m:Price>34.5%</m:Price>
</m:GetS5tockPriceResponse>
</soap:Body>

< fsoap:Envelope>

SOAP Security WS-SECURITY

e SOAP APIs will authenticate and authorize the API calls, / FNYRLOES \
e Web Service-Security is a SOAP extension that provides HEADER

a number of security features for SOAP APIs.
o describes how to sign and encrypt SOAP messages
o Built on XML encryption

e Most importantly, WS-Security enables end-to-end security,
authorization of senders
e Operation chaining

BODY

ENCRYPTED MESSAGE

SOAP cons

e SOAP is a standard protocol with strict rules
o Not flexible
e SOAP APIs forgo performance speed for higher complexity (Security).
o Operation change is server-side taxing
e Has tight coupling between server and clients
o To update a message property, must change both client and server
o Harder to maintain

e XML message structure VERY verbose

XML

Large XML files can take exponential space

O

DOM + opening/closing tags

Needs processing power/dedicated tool to
parse xml data into required format
XML’s broad scope

O

Are limited by imagination (what you wean to
type)

Laurentiis

JSON

JSON is lightweight and easy to parse
o Its string and arrays

Supported by all browsers

Seamlessly works with AJAX

Smaller size means faster transmission

time/space

Human readable

REST - Representational State transfer

REST is a specification that dictates how distributed systems communicate with each other

Resource based
Language agnostic
Stateless
Cacheable

REST suggests boundaries instead of a rigid structure

Uniform interface

Client server autonomy
Layered system architecture
Stateless interactions

HTTP caching

REST constraints

Uniform interface Client server autonomy
e One naming convention - nouns e Client and server implementation is
e One endpoint format abstracted
o uri + http method + resource e Allows for server and client changes
e One data format - JSON without affecting communication

GET

POST
CLIENT : Do/
. DELETE
CLENT e

INTERFACE

REST constraints

Layered system Architecture

e Given a system have multiple servers
Clients will only interact with the APl on
the app server

e App server will aggregate the reply for the
client

e Allows for greater server scalability

------------- .1 api APPLICATION
CLIENT REST AP (ARECEEEN

SHOPPING APP

SHIPPING SERVICE

REST constraints

Stateless Interactions

Treat every request as a new request

No past session or request data is stored
o Different from SOAP
o Increase server side efficiency

Makes web app easy to scale

Code On Demand

Not commonly used
Client asks server for key generating code

API will fetch code from the server
o Runs code on client side

Caching

CLIENT S e L L e

clients can retain content and reduce load
on servers

I e = S e @

RESTful web service

Constraints enforce simplicity -> easier development

REST is an standard so an api that meets the stand of REST is a RESTful API

Not necessary to enforce every constraint

r

UNIFORM INTERFACE
CLIENT-SERVER
STATELESS
CACHEABLE
LAYERED SYSTEM

CODE ON DEMAND

Resource allocation

e Each resource is assigned to a specific url/uri

o EX. https://example.com/api/v3/products
o Protocol + host address + path to resource

e Each resource must be a noun

o /products (Good) /getProducts (Bad)
o HTTP methods will act as the verb

https://example.com/api/v3/products

HTTP methods

CRUD = Create, read, update, delete

GET - retrieve data from a specified resource okay next we have a
POST — submit / create data to be process to a specific resource (forms)
PUT - update a specified resource (adjax)

DELETE - delete a specified resource

Others

e HEAD - same as get, but does not returns a body, only header
OPTIONS - see the supported http methods
e PATCH - update partial resources

REST HTTP requests

The requests must also follow a specific format

URI

Method

Protocol

Header

210]0)Y

Endpoint -

Used to identify the resource via an endpoint. Ex. URL

HTTP verb (GET, POST,...).

Typically HTTP/1.0 or 2.0.

Metadata (message format, cache settings, request
authorization, cookies).

Payload being sent as a JSON object (Ex. parameters).
(optional)

HTTP Method -

HTTP Headers -

https://apiurl.com/review/new

POST

content-type: application/json
accept: application/json
authorization: Basic abase64string

{
“yeview” : {
“title” : “Great article!”,
“description” : “So easy to follow.”,
“rating” : 5
H
}

REST HTTP response

Protocol Typically HTTP/1.0 or 2.0.

HTTP status code | 200, 400, 500

Header Metadata (content length, content type, date)

Response body return data in JSON

HTTP/1.1 200 OK

POST /products HTTP/1.1 JSON:

HTTP/1.1 200 OK

Client Server

XML VS

Large XML files can take exponential space
o DOM + opening/closing tags
Needs processing power/dedicated tool to
parse xml data into required format
XML’s broad scope
o Are limited by imagination (what you wean to
type)

Attribute:
“lang”

JSON

JSON is lightweight and easy to parse

o Its string and arrays
Supported by all browsers
Seamlessly works with AJAX
Smaller size means faster transmission
time/space

Human readable

SOAP request

POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

£?2xml version="1.8"2>

<soap:Envelope
xmlns:soap="http: //www.w3.0org/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.org/2083/05/soap-encoding”:

<soap:Body xmlns:m="http://www_example.org/stock”>
<m:GetS5tockPrice>
<m: StockMame>IBM< /m:StockMame>
</m:GetStockPrice>»
</soap:Body>»

</soap:Envelope>

SOAP response

HTTP/1.1 28@ OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<2xml version="1.8"2>

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/65/so0ap-envelope/"
soap:encodingStyle="http://www.w3.org/2803/05/scap-encoding™ >

<soap:Body xmlns:m="http://www.example.org/stock”>
<m:GetS5tockPriceResponser
<m:Price>34.5</m:Price>
</m:Get5tockPriceResponse>»
< /soap:Body>

</soap:Envelope>

Versioning

e Versioning allows an implementation to provide backward compatibility

o if we introduce breaking changes from one version to another, clients have time to move to
new version

e Done by prefixing the uri

>

REST API Versioning

6 Spotify

Authentlcatlon |n REST Connect Discord to your

Spotify account.

See and play what other people are listening to on
Discord. Spotify premium members can even listen

Uses OAuth 2.0 framework along with their friends!
Discord will be able to receive this Spotify account data.
e No password sharing T ———
e Ability to revoke access to application individually ==
e Thus users have limited access to resources T ek

CANCEL

Use of a separate authentication server

e Client makes OAuth request => is granted/denied

e Resource server sends client an access token
o Token determines what resources client can access

e Protected resource is sent back to client

cons

e JSON properties are not strongly typed

o Further logic to parse and convert properties into data types (uint32, chars, float,..)

e Overfetching - need to make multiple API requests to collect required data
o This will increase payload size

COMPANY NAME -
AND LOCATION FOUNDER'S NAME

API framework developed by Meta/Facebook in 2015

A query language for APIs

No under/over fetching of data

Data in request and responses are strongly typed

It is language and HTTP agnostic. o {
Very flexible el

author
year

" mk " {
e": "System Design Interview",
or”: "Sahn Lam",

e GraphQL can decouple frontend from backend.
Is an application layer server-side technology

GraphQL client

-

GraphQL

I\

- R M M
#

Backend

The BIG difference from REST

e Access any resource through one endpoint, the /graphQL.
e The client will define the structure, schema, of required data and the server
will return the exact JSON data from the schema

&% REST Client

A
{ type Book (
: "System Design Interview Volume 2°, \d: Il
: [{ title: St
GET /b00k5/123 : "Alex Xu* authors: [Aut)
| }
GET /authors/2 (
w": "Sahn Lan" type Author (
GET /aUthOrS/3 H \d: Il
} 'wl [Book]
}
\ 4

Defining Schemas

e Every graph uses a schema to define the

types of data it includes
e Schemas are strongly typed

(@)

O O O O O

(@)

Primitive types
Objects
Enums
Interfaces
Unions

Input objects
ID

e This code must be on both client
and server

o

Normally labeled schema.xx

server/src/schema.js

type Rocket {
id: ID!
name: String
type: String
}

type User {
id: ID!
email: String!
trips: [Launch]!
token: String

}

type Mission {
name: String

missionPatch(size: PatchSize):

}

enum PatchSize {
SMALL
LARGE

String

Operations: Queries and Mutation

e Mutation - GraphQL way of applying modification of resources
o Equivalent of a POST request

e Queries- GraphQL way for client to receive notifications on data

modifications
o Equivalent of a GET request

server/src/schema.js server/src/schema.js) copy
type Query { type Mutation {
launches: [Launch]! bookTrips(launchIds: [ID]!): TripUpdateResponse!
launch(id: ID!): Launch cancelTrip(launchId: ID!): TripUpdateResponse!
me: User login(email: String): User

1 H

Queries and Mutation

Query to fetch all the pets Add a new pet (Mutation)
y GetAllPets { tat AddNewPet (Sname: String!, SpetType; PetType) {
pets { addPet(name: Sname, petType: SpetType) {
name id
petType name
) petType
} }

Subscriptions

e Subscriptions are long-lasting operations that can change their result over time.
Will maintain an active connection to GraphQL server allowing server to push

updates
o Through WebSockets protocol in the graphqgl-ws library.

e Used for Small, incremental changes to large objects
e Low-latency, real-time updates. Ex. chat app receiving new messages

Client side

const COMMENTS_SUBSCRIPTION = gql' O Copy

subscription OnCommentAdded($postID: ID!) {

Server Ssde

commentAdded (postID: $postID) { 1 type Subscription {
id 2 commentAdded (postID: ID!): Comment
content 3 3}

eI I = 1 T L o

GraphQL requests and response

GET request format
GET /graphql?query={ [id: “123”) { | H (nare })

resources fields

The response Is a nested JSON object just like rest

GraphQL drawbacks

e GraphQL requires heavier tooling support, both on the client and server

sides.

o No special libraries need for REST APIs
e Required files for all parties

o Schema.graphgl

o Codegen.yaml

o operations.graphgl
e Need other tools Like Apollo to implement the specification

o Apollo framework and tools allows us to build, validate, observe the graph
e Few companies have public graphQL services

o EXx. Yelp, Github, Spacex
o All have REST APIs as well

Hard to cache

GraphQL drawbacks

e This requires a sizable upfront investment. D I =

GraphQL client Server
® In development time and resources /

® Adds complexity for CRUD operations

e Caching becomes more difficult

® REST leverages browser, CDNSs, proxies, and web services

® Caching becomes highly nuanced and not trivial

GraphQL drawbacks

e Its has a sharp learning curve due to niche operations and schema language
o Schema definition language (SDL)
o Does Not follow KISS

So REST vs GraphQL like everything SWE — TRADEOFFS

Is there a better way?

maybe?

Why | chose this topic?

RPC (Remote Procedure Call)

e RPCs enables one machine to perform code one another AS IF its a local call
e Great for connecting multiple backend services together

Same machine Multiple machines

Regular Procedure Call Basic RPC

("L"c,s G!O(”‘."'S’.”V":(' { MA{:—HINE1 Ir cLlEHT mcH|HE2 II EERUER
String SayHello (String text)

) class GreaterClient { |

} Stnng SayHello (St

class GreeterClient { }

var greeter = new GreelerService()

class Greaters

greeter, SayHello("World")
}

Why not REST

e For simple servies, HTTP REST is enough

o HTTP verbs are rich
o Details are well understood

e For more complex services, RPCs provides more flexibility
o Domain specific: bank transfers
o More strongly typed experience

Open source RPC framework made by Google in 2016
Language agnostic

Easy to use

Really fast performance with ProtoBufs over HTTP/2
Enables developers to build microservices based apps
Can use SSL/TLS tokens for Authentication

Protocol Buffers

e Language and platform agnostic mechanism for encoding structured data
over the wire.

e support strongly-typed schema definitions.
o Defined in a .proto file

e Services defined in a .proto file by = publisher.proto
specifying RPC method parameters orvice Publtsher {
and return types. pc SignBook (SignRequest) ret (SignReply) {}
}
¢ ge SignRequest {
message Author { < name = 1;
string name = 1; }
int32 id = 2; essage SignReply {

}I) signature = 1;

gRPC Stub

gRPC Server

Performance

e Protocol Buffers is a very efficient binary encoding format.
o More fast JSON

e gRPC is built on top of HTTP/2

Binary Encoding - Protobuf

field tag length value
o Multiplexing ~ | <
o ob 0001 0008 6B 65 79 62 6F 61 72 64
o Steam prioritization string k e y b o a r d
o Binary er)tocoIs.. i:: o002 1
e Allows multiple RPC calls =1
- . 0003 100
over a TCP connection 64
JSON

{

“productName”: "keyboard”,
“quantity™: "1",

“price”: "100”

}

JSON issues

e Wwe can easily parse the JSON to an internal data structure using the built-in
JSON library

,

example.com/’

e Self-contained and human readable
e BUT cost of serializing/deserializing is expensive
e Has unclear types

JSON Is massive
51B

s 'url":"http://example.com/"}

19B

URL is 19 bytes (19 characters)
Timestamp as a 32bit is 4 bytes
Total = 23 bytes

Nearly half is overhead!!

Protobuf request

e Lets save space and power by declaring this schema beforehand.

o Defined in our .proto file \ message WebsiteVisit ({
e Define codes for each field timestamp;

o to mark where one field ends and another one starts. url;

}

e use this schema to store the types of the data we store. ‘

message WebsiteVisit ({
int32 timestamp = 1;

string url = 2;

}

Sample Request

Protocol Buffers

field tag =1 type 2 (string) lenghe M a r t 1 n

0000 1|0 10 Qal| |06| |4d 61 72 74 69 6Ge 1337
0010100111001

field tag =2 type O (varint) e \\ ==
20010000 10| (b9 @a 110 111001] [elco 01010

field tag =3 type 2 (string) enghtt d a y d r e a m 1 n g
20011010 la| |@b| |64 61 79 64 72 65 61 6d 69 Ge 67

field tag =3 type 2 (string) engh7 h a ¢ k 1 n g

20011010 la| (07| [68 61 63 6b 69 Ge 67

total: 33 bytes

Protobuf Runtime Installation

Serialization

Protobuf supports several different programming languages. For each
programming language, you can find instructions in the corresponding source

P BUt JSON |S SO Slmple tO read and directory about how to install protobuf runtime for that specific language:

parse -> its a string L= Source
C++ (include C++ runtime and -
e Binary is not portable on its own protod
Java java
e Google made open-source Python python
genera‘tors Objective-C objectivec
C# csharp
Ruby ruby
Go protocolbuffers/protobuf-go
PHP php
Dart dart-lang/protobuf

. protocolbuffers/protobuf-
Javascript ,
javascript

Response

public final class PersonQuterClassi{
private Person OutexClass() i}
public static void registerAllExtensions(
ExtensionRegistrylLite registry){
%
public static void registerAllExtensions(
ExtensionRegistry registry)i{
registerAllExtensions(
(ExtensionRegistrylLite) registry;
)
I}
)
public interface PersonOrBuilder extends MessageOrBuilderi
boolean hasName();
String getName();

Protobuf

.proto

Ruby project

class WebsiteVisit { class WebsiteVisit do

} end l

i

visit.build

JSON Protobuf

Good for : Good for:
e Small volume e Higher volumes
e Indeed to inspect e Similar messages

e Messages are varied e Performance matters

e Sending to browsers e Sending to services

g '
[Smrhppliuti::n]
Ok T

Encoding/Decoding
Oelane |
[gRPC Runtime]

]
send

@r-L-C@l

o

Payment Service

Web clients??

e (gRPC relies on lower-level access to HTTP/2 primitives.
e No browsers currently provide that level of control

e Solution: Use a proxy —» gRPC-Web

o Not fully compatible with gRPC

o Usage is low

Best for Microservices

REST API
hip B ‘MID hip
API Gateway

Microservices

Which one??

e Each have pros/cons
e Depends on business logic or goals

	Slide 1: API Paradigms
	Slide 2: Background
	Slide 3: SOAP web services
	Slide 4: SOAP header block
	Slide 5: SOAP request
	Slide 6: SOAP response
	Slide 7: SOAP Security
	Slide 8: SOAP cons
	Slide 9: XML JSON
	Slide 10: REST - Representational State transfer
	Slide 11: REST constraints
	Slide 12: REST constraints
	Slide 13: REST constraints
	Slide 14: RESTful web service
	Slide 15: Resource allocation
	Slide 16: HTTP methods
	Slide 17: REST HTTP requests
	Slide 18: REST HTTP response
	Slide 19: XML vs JSON
	Slide 20: SOAP request SOAP response
	Slide 21: Versioning
	Slide 22: Authentication in REST
	Slide 23: cons
	Slide 24
	Slide 25
	Slide 26: The BIG difference from REST
	Slide 27: Defining Schemas
	Slide 28: Operations: Queries and Mutation
	Slide 29: Queries and Mutation
	Slide 30: Subscriptions
	Slide 31: GraphQL requests and response
	Slide 32: GraphQL drawbacks
	Slide 33: GraphQL drawbacks
	Slide 34: GraphQL drawbacks
	Slide 35: Is there a better way?
	Slide 36: Why I chose this topic?
	Slide 37: RPC (Remote Procedure Call)
	Slide 38: Why not REST
	Slide 39
	Slide 40: Protocol Buffers
	Slide 41:
	Slide 42: Performance
	Slide 43: JSON issues
	Slide 44: JSON is massive
	Slide 45: Protobuf request
	Slide 46: Sample Request
	Slide 47: Serialization
	Slide 48: Response
	Slide 49
	Slide 50: JSON Protobuf
	Slide 51
	Slide 52: Web clients??
	Slide 53: Best for Microservices
	Slide 54: Which one??

